

© 2022 Sony Semiconductor Solutions corporation

 1

STANDALONE MODE SAMPLE APPLICATION FOR ARDUINO ENVIRONMENT (Version 1.0.1)

Description
STANDALONE MODE SAMPLE APPLICATION FOR ARDUINO ENVIRONMENT

(Arduino_standalone_mode_sample_app) is a sample application for LPWA transmission using Standalone mode on

CXM150x in the Arduino development environment. The MCU to be used is STMicroElectronics STM32L073 or

Espressif ESP32.

Communication control, power control and basic payload data generation are performed by the CXM150x itself

according to the EEPROM setting of the CXM150x, and the host MCU performs only partial payload change and the

operation mode setting at startup. As an example of attaching user data to a payload, this program replaces the end

of the payload (bit 117 – 127) that CXM150x automatically generated with a tick (program run time).

At the time of the start-up, the callback function to be called when an error occurs is registered.

For details on each function and how to build the application, refer to the CXM150x HOST I/F Specification,

CXM150x Configuration Manual, CXM150x Programmer's Manual and CXM150x Application Manual.

Hardware Preparation
When using the CXM150x DK-Board in conjunction with the STMicroElectronics NUCLEO-L073RZ evaluation

board, install the CXM150x DK-Board on the NUCLEO-L073RZ Arduino connector (See DK Startup Manual).

Otherwise, wire the CXM150x according to the application circuit example in the data sheet, and connect it to the

host MCU as follows. If the input/output voltage of the MCU is other than 1.8V - 2V, connect it to the CXM150x via the

level converter as necessary.

CXM150x pin

(DK board pin)

STM32L073 pin ESP32 pin

ENABLE (D9) PC 7 GPIO 19

WAKEUP (D12) PA 6 GPIO 22

INT_OUT2 (D6) PB 10 GPIO 4

RX (D8) PA 9 GPIO 17

TX (D2) PA 10 GPIO 16

CTS (D3) PB 3 GPIO 15

RTS (D5) PB 4 GPIO 14

 2

Building Applications and Writing to MCU
The Arduino IDE is used to build and write applications.

Before generating the STM32L073 application, install the "STM32 MCU based board" board library using the board

manager. Also enable '#define FOR_STM32_DRIVER' in the source file CXM150x_Port.cpp and comment out

'#define FOR_ESP32_DRIVER'.

For ESP32, install the "ESP32" board library with the board manager beforehand. Also enable '#define

FOR_ESP32_DRIVER' in the source file CXM150x_Port.cpp and comment out '#define FOR_STM32_DRIVER'.

To use the transmit duty limit function in the CXM1504GR, change the definition of the macro TX_DUTY_USE in

main_standalone_mode_sample_app.cpp as follows:

#define TX_DUTY_USE (1)

To build and write:

・Unzip the distributed source file zip package and open standalone_mode_sample_app.ino from the Arduino IDE.

・In the Arduino IDE, select the board you want to use from the [Tools] menu and set the required settings.

・Build and write to MCU according to the operation of Arduino IDE

Additional Information

•Supported firmware version

The following EEPROM settings are involved in the operation of this application.

EEPROM function Description

INT_OUT2 Generates a signal to notify the CXM150x a specified time (in

milliseconds) before it starts sending UARTs.

Must be non-zero.

A setting of 10 is recommended.

SM_TOUT Specifies the time after which CXM150x automatically transitions to

normal operation mode.

Set to 0 (automatic transition disabled).

AUTOPLD_COLLECT Set the data collection start time for the auto-payload data collection

by the number of seconds before the data is sent.

Must be non-zero.

A setting of 5 is recommended.

WAKEUP_CTRL Sets whether the UART interface circuit is automatically powered off.

Set it to 0 (do not turn it off automatically).

System firmware version (GNSS firmware version)

FY0100_RA2400 (17166,3dac91c,122) or later

 3

AUTO_PERIODIC_SELECT

PROFILE_SELECT

MIN_DSLP_TIME

DSLP_BUP

Set the value appropriate for the transmission profile to be used.

See the CXM150x Application Manual and the CXM150x

Configuration Manual for configuration.

AUTOPLD_SRC_SELECT

AUTOPLD_LAT_BASE

AUTOPLD_LON_BASE

AUTOPLD_LAT_RANGE

AUTOPLD_LON_RANGE

AUTOPLD_LAT_RES

AUTOPLD_LON_RES

AUTOPLD_SRC6_BIT_WIDTH

AUTOPLD_SRC7_BIT_WIDTH

AUTOPLD_HEIGHT_OFFSET

AUTOPLD_SRC1_BIT_POS

AUTOPLD_SRC2_BIT_POS

AUTOPLD_SRC3_BIT_POS

AUTOPLD_SRC4_BIT_POS

AUTOPLD_SRC5_BIT_WIDTH

AUTOPLD_SRC5_BIT_POS

AUTOPLD_SRC6_BIT_WIDTH

AUTOPLD_SRC6_BIT_POS

AUTOPLD_SRC7_BIT_WIDTH

AUTOPLD_SRC7_BIT_POS

AUTOPLD_SRC8_BIT_POS

AUTOPLD_SRC9_BIT_WIDTH

AUTOPLD_SRC9_BIT_POS

Specifies the data and placement to be set in the payload.

See the CXM150x Application Manual and the CXM150x

Configuration Manual for configuration.

This application is tested with the following versions of each software/library in the Arduino environment.

Software / Library Version Information URL

Arduino IDE 1.8.15 https://www.arduino.cc/software

STM32 MCU base board 2.0.0 https://github.com/stm32duino/Arduino_Core_STM32

ESP32 1.0.5 https://docs.espressif.com/projects/arduino-esp32/en/latest/

	Description
	Hardware Preparation
	Building Applications and Writing to MCU
	Additional Information

